Thursday, July 7, 2022

BITS-WILP-Machine Learning - ML - Comprehensive Examination - 2019-2020

Birla Institute of Technology & Science, Pilani

Work Integrated Learning Programmes Division

Second Semester 2019-20

M.Tech. (Data Science and Engineering)

Comprehensive Examination (Makeup)



Course No.         : DSECLZG565

Course Title         : MACHINE LEARNING  

Nature of Exam        : Open Book 

Weightage         : 40% 

Duration         : 2 Hours  

Date of Exam:           July 12, 2020                            Time of Exam: 10:00 AM – 12:00 PM


Note: Assumptions made if any, should be stated clearly at the beginning of your answer. 


Question 1.    [3+3+2+3=11 Marks]   

             

  1. Suppose you receive messages in sequence of bits (0’s and 1’s) with unknown bias θ for 1’s; there is a message sequence as x1, x2, ..., xn of length n is received.

What θ maximizes the likelihood of the data observed (in terms of n) ? Assume that sample x1, x2, ..., xn is from a parametric distribution f (x|θ), where f (x|θ) is the Bernoulli probability mass function with parameter θ. [3 marks]



    1. In context of naive Bayes, what is meant by Laplace smoothing? [1 mark]

  1. Handling extremely low probabilities. 

  2. None of these 

  3. Make zero probabilities non-zero. 

  4. Making probabilities zero.

  1. Why Naïve Bayes algorithm is called so?    [2 marks]


  1. Consider fitting a logistic regression model to predict whether a customer will default the bank loan or not given his bank balance, income and whether student/non-student. The optimal model coefficients are: Intercept = -10.86, balance = 0.0057* balance, income = 0.0030 and student = -0.6468. Predict whether a student with balance of Rs.1500 and an income of Rs 40,000 will default or not. [2 marks]


  1. The regression line for predicting weight from height is height=1.51*weight+45.47.   Heights is in cm  and weights in kg Interpret the equation and find the height of a person whose weight is 100kgs [2+1=3marks]


Question 2.  [2+5=7 Marks]   

An odd parity generator outputs a ‘1’ when sum of ‘1’s in an input binary sequence is odd. 

  1. What are the parity bits P for a binary sequence (x1, x2) of length 2? x1, x2 are either 0 or 1. [2 marks]

  2. Realize an odd parity generator for binary sequence of length 2 using an MLP, with the following logic gate building blocks (with sigmoidal activation function). Show the network architecture with all weights and bias values. [ 1+1+3 = 5 marks]

Question 3.    Answer the following questions. [5+5 =10 Marks]


  1. Consider training an AdaBoost classifier using decision stumps on the following data set. Decision stump classifier chooses a constant value c and classifies all points where x > c as one class and other points where x ≤ c as the other class. 

1. What is the initial weight that is assigned to each data point? [1 marks]

2. Show the decision boundary for the first decision stump (indicate the positive and negative side of the decision boundary).  [2 marks]

3. Circle the point whose weight increases in the boosting process [2 marks]


  1. Suppose you are given the following pairs. You will simulate the k-means algorithm to identify TWO clusters in the data. Suppose you are given initial assignment cluster centre as {cluster1: #1}, {cluster2: #10} – the first data point is used as the first cluster centre and the 10th as the second cluster centre. Please simulate the k-means (k=2) algorithm for one iteration. What are the cluster assignments after one iteration? Assume k-means uses Euclidean distance.

                                     [5 Marks]   



Data #

x

y

1

1.9

0.97

2

1.76

0.84

3

2.32

1.63

4

2.31

2.09

5

1.14

2.11

6

5.02

3.02

7

5.74

3.84

8

2.25

3.47

9

4.71

3.6

10

3.17

4.96

https://lh5.googleusercontent.com/kyhKlQh1YUGccCDMSPCQr1lplWKli0qf6YDG5gH0d_pEEGAbf1MQxqOuCSc2F95Wg6h8JnCxfkXLsTgavIZ5El-ac6kh0OJoPZS82uSnV0YPHzNTfrbQYlpn0ZKH3y2l8qTmQCMG






Question 4. Answer the following questions. [5 Marks]   

Students in a particular class are graded in subjects A, B and C out of 10 points. Based on the information provided in the table below for 8 students, predict using KNN algorithm approach if a student who scored the following grades  A 5; B 7; C 6 will pass or fail?

  1. When K = 3?

Score in A

Score in B

Score in C

Result

9

5

7

Pass

7

3

6

Fail

5

8

9

Pass

8

6

7

Pass

4

7

8

Fail

6

7

6

Pass

6

8

5

Fail

5

6

5

Fail


Question 5. Answer the following questions. [7 Marks]   


  1. Solve the below and find the equation for hyper plane using linear Support Vector Machine method. 

Positive Points: {(3, 2), (4, 3), (2, 3), (3, -1)}

Negative Points: {(1, 0), (-1, -3), (0, 2), (-1, 2)}






---------------------------------------------------------------------------- 
All the messages below are just forwarded messages if some one feels hurt about it please add your comments we will remove the post. Host/author is not responsible for these posts.

No comments:

Post a Comment